Color Edge Saliency Boosting using Natural Image Statistics
نویسندگان
چکیده
State of the art methods for image matching, content-based retrieval and recognition use local features. Most of these still exploit only the luminance information for detection. The color saliency boosting algorithm has provided an efficient method to exploit the saliency of color edges based on information theory. However, during the design of this algorithm, some issues were not addressed in depth: (1) The method has ignored the underlying distribution of derivatives in natural images. (2) The dependence of information content in color-boosted edges on its spatial derivatives has not been quantitatively established. (3) To evaluate luminance and color contributions to saliency of edges, a parameter gradually balancing both contributions is required. We introduce a novel algorithm, based on the principles of independent component analysis, which models the first order derivatives of color natural images by a generalized Gaussian distribution. Furthermore, using this probability model we show that for images with a Laplacian distribution, which is a particular case of generalized Gaussian distribution, the magnitudes of color-boosted edges reflect their corresponding information content. In order to evaluate the impact of color edge saliency in real world applications, we introduce an extension of the Laplacian-of-Gaussian detector to color, and the performance for image matching is evaluated. Our experiments show that our approach provides more discriminative regions in comparison with the original detector.
منابع مشابه
Color Edge Saliency Boosting using Natural Image Statistics
State of the art methods for image matching, content-based retrieval and recognition use local features. Most of these still exploit only the luminance information for detection. The color saliency boosting algorithm has provided an efficient method to exploit the saliency of color edges based on information theory. However, during the design of this algorithm, some issues were not addressed in...
متن کاملNatural scene text localization using edge color signature
Localizing text regions in images taken from natural scenes is one of the challenging problems dueto variations in font, size, color and orientation of text. In this paper, we introduce a new concept socalled Edge Color Signature for localizing text regions in an image. This method is able to localizeboth Farsi and English texts. In the proposed method rst a pyramid using diff...
متن کاملCompressed-Sampling-Based Image Saliency Detection in the Wavelet Domain
When watching natural scenes, an overwhelming amount of information is delivered to the Human Visual System (HVS). The optic nerve is estimated to receive around 108 bits of information a second. This large amount of information can’t be processed right away through our neural system. Visual attention mechanism enables HVS to spend neural resources efficiently, only on the selected parts of the...
متن کاملA Saliency Detection Model via Fusing Extracted Low-level and High-level Features from an Image
Saliency regions attract more human’s attention than other regions in an image. Low- level and high-level features are utilized in saliency region detection. Low-level features contain primitive information such as color or texture while high-level features usually consider visual systems. Recently, some salient region detection methods have been proposed based on only low-level features or hig...
متن کاملSUN: A Bayesian framework for saliency using natural statistics.
We propose a definition of saliency by considering what the visual system is trying to optimize when directing attention. The resulting model is a Bayesian framework from which bottom-up saliency emerges naturally as the self-information of visual features, and overall saliency (incorporating top-down information with bottom-up saliency) emerges as the pointwise mutual information between the f...
متن کامل